Population Pharmacokinetics of ZT-1 and its Active Metabolite Huperzine A after Intravenous, Oral and Subcutaneous Administration in Healthy Volunteers

¹C. Csajka, ¹T. Buclin, ²V. Nicolas, ²P. Grosgurin, ²H. Porchet, ²P. Scalfaro, ¹J. Biollaz, ²E. Tamchès

¹ Division of Clinical Pharmacology, University Hospital, Lausanne, Switzerland - ² Debiopharm SA, Lausanne, Switzerland

Background

ZT-1 is currently in development for the treatment of mild to moderate Alzheimer's disease. ZT-1, through its active metabolite huperzine A (Hup A), has been shown to be a potent and selective inhibitor of acetylcholinesterase in vitro and in vivo.

This study aimed at characterizing the pharmacokinetic (PK) profile of ZT-1 and to describe the biotransformation of ZT-1 into Hup A after administration of intravenous, oral and subcutaneous doses.

Method

Studies : 5 single dose phase I studies and 1 multiple dose phase I study over 14 days

Patients : 88 healthy young and elderly healthy volunteers

Data : 2425 plasma concentrations of ZT-1 and 2679 of Hup A. Rich sampling design (average 19 ± 7.6 plasma concentration measurements per individual)

Doses : 3 routes of administration of ZT-1: iv (0.1, 0.3 mg), po (0.5, 1, 1.5, 2 and 3 mg) and sc (0.3, 0.6 mg)

Analytical Methods : Plasma measurement of ZT-1 and Hup A by LC/MS/MS

 ${\bf PK}$ Analysis : multi-compartment model using NONMEM (Version V), subroutine ADVAN6, using FOCE CENTERING

Covariates analysis : generalized additive model and diagnostic plots to evaluate the potential influence of specific covariates : demographic covariates (body weight, height, sex, age, body mass index), food intake, creatinine clearance

Error model : log normal error distribution for the intersubject variability in the pharmacokinetic parameters and log normal and additive error model for the intrasubject variabily.

Results

A three compartment model adequately fitted ZT-1 plasma concentration data for oral, iv, and sc routes, with first-order absorption for oral and sc doses and first-order elimination as illustrated in Figure 1.

A first order biotransformation of ZT-1 to Hup A was used to fit the metabolite data, for which a bicompartimental disposition was observed (Figure 1).

>ZT-1 underwent both a systemic and a presystemic metabolisation into HuP A. Approximatively 30% of the oral and 65% of the sc ZT-1 doses were transformed directly into the active metabolite in the absorption compartments.

 \geq An increase in the bioavailability of ZT-1 was observed after intake of the 2 mg and the 3 mg oral doses. A reduction of ZT-1 bioavailability was observed between the 0.3 and the 0.6 mg sc doses.

> No covariates seemed to affect ZT-1 pharmacokinetics nor Hup A in this group of healthy volunteers.

where $\theta_{1\text{-}3}$ are population parameter estimates

Pharmacokinetic Parameter Estimates of ZT-1 and Hup A

ZT-1 PK parameters	Population estimates	IIV CV %	Hup A PK parameters	Population estimates	IIV CV %
$ \frac{\text{CL (L/h)}}{\text{V}_{c} (L)} \\ \frac{\text{V}_{p} (L)}{\text{O} (L/h)} $	6.53 1.41 11.8 19	48 66 19	k57 (h ⁻¹) k70 (h ⁻¹) k78 (h ⁻¹)	5.0 10.6 124	42
$V_{p2}(L)$	32.7	73	k87 (h-1) V _m (L)	0.54 1 fixed	50
$Q_2(L/h)$ k_{15} (h ⁻¹)	1.45 0.39	27	$V_{mp}(L)$ k37 (h-1)	1 fixed 0.57	
$Lag_1 (h) k_{25} (h^{-1})$	0.46 0.19	42	k47 (h-1)	0.134	33
F _{sc} (0.3 mg) F _{sc} (0.6 mg)	$\left. \begin{smallmatrix} 0.36 \\ 0.27 \end{smallmatrix} \right\} F_2$	14	F _{scm} (0.3 mg) F _{scm} (0.6 mg)	$\left.\begin{array}{c}0.64\\0.73\end{array}\right\}(F_4)$	14
F_{oral} (0.5, 1 mg F_{oral} (2 mg) F_{oral} (3 mg)	$\begin{pmatrix} 0 & 0.14 \\ 0.17 \\ 0.25 \end{pmatrix}$ F	57	F _{oralm} (0.5,1 mg F _{oralm} (2 mg) F _{oralm} (3 mg)	(F ₃) 0.36 0.31 0.34 (F_3)	57
σ add (nM) σ prop (CV%)	0.52 25		σ add (nM) σ prop (CV%)	0.39 30	

Derived Pharmacokinetic Estimates of ZT-1 and Hup A

ZT-1		Hup A		
t ½ α (h)	0.03	$t \frac{1}{2}\beta$ (h)	0.3	
t ½ β (h)	1.5	$t^{1/2}\gamma$ (h)	18	
t ½ γ (h)	19			
t ½ ka oral (h)	1.8			
t ½ ka sc (h)	3.6			
Vd _{ss} (L)	45.9			

Hup A concentration-time profiles

TIME (h)

TIME (h)

Figure 1. Concentration-time profile of ZT-1 and Hup A (circles) after administration of 0.3, 0.6 mg sc, 1 mg po and 0.1 and 0.3 mg iv ZT-1 with population predictions (solid line) in a representative study ¹

Conclusion

- The combined pharmacokinetics of ZT-1 and Hup A are adequately described using the 9-compartment model after three routes of administration (iv, po, sc).
- The parameter estimates indicate that ZT-1 is rapidly transformed into Hup A via both a presystemic and central biotransformation.
- About 65 % of the sc dose and 30 % of the oral doses of ZT-1 are transformed directly into Hup A in the absorption compartments.
- ZT-1 and Hup A elimination is slow with a long terminal half-life of about 19 h., respectively 18 h., which allows a once-daily administration.
- No covariates influence the pharmacokinetic profile of ZT-1 and Hup A in this group of healthy subjects. Further analyses will be performed on the target population of patients.
- > This model will be very helpful for further developments of ZT-1.

¹ Ramael S. A study of the pharmacokinetics and safety of an injectable intravenous formulation of ZT-1 in healthy young male and female volunteers (part 1) and of the bioavailability of an oral tablet formulation and of an injectable subcutaneous formulation of ZT-1, as compared to an intravenous formulation, in healthy elderly male and female volunteers (part 2). SGS Biopharma SA, Study DEB-ZT-107, Clinical Study Report; 2004 15 October 2004.

