NCT05706129

First-in-human clinical trial design of a first-in-class theranostic approach with a peptide-based radioligand targeting CAIX-expressing tumors

Darren R Feldman¹, Ben Tran², Michael Hofman², Louise Emmett³, Pierre Olivier⁴, Hakim Mahammedi⁵, Ivana Galetic⁶, Anna Pokorska-Bocci⁶, Florilene Bouisset⁶, Kathrin Gollmer^{6*}, Mariya Pavlyuk⁶, Libuse Tauchmanova^{6*}, Ken Herrmann⁷

¹ Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, USA and Department of Medicine, Weill Cornell Medical College, NY, USA; ²Peter MacCallum Cancer Center, Melbourne, Australia; ³St Vincent's Hospital, Sydney, Australia; ⁴CHRU de Nancy - Hopitaux de Brabois, Nancy, France; ⁵Département of Medical Oncology, France; Centre Jean Perrin, Clermont-Ferrand, France; ⁶Debiopharm International SA, Lausanne, Switzerland; ⁷University Hospital Essen, Essen, Germany

*KG and LT were employed at Debiopharm International SA at the time the study was designed

BACKGROUND

CAIX

- Expression of carbonic anhydrase IX (CAIX), a cell surface glycoprotein, can be induced by a state of hypoxia or by mutation of the Von Hippel-Lindau tumor suppressor gene¹
- CAIX has been implicated throughout tumorigenesis, from early carcinogenesis to metastatic dissemination of tumor cells¹
- Certain tumors have been found to express high levels of CAIX²
- CAIX expression is associated with progressive disease and overall poor outcomes in various solid tumors^{3,4}
- High expression in hypoxic tumors and restricted expression in healthy tissues⁵ make CAIX an attractive diagnostic and therapeutic target

Tissue	H-score	CRC	PDAC	ccRCC
Malignant	> 150	29% (25/85)	40% (26/65)	83% (25/30)
	> 100	41% (35/85)	51% (33/65)	83% (25/30)
	> 40	52% (44/85)	60% (39/65)	87% (26/30)
Healthy	> 150	0% (0/21)	0% (0/4)	0% (0/30)
	> 100	0% (0/21)	0% (0/4)	0% (0/30)
	> 40	0% (0/21)	0% (0/4)	0% (0/30)
CRC (H-score: 195)		PDAC (H-score: 230)	(H·	ccRCC -score: 300)
an contraction of the second s				

Figure 3. Study design schematic.

Figure 1. High expression of CAIX has been observed in various tumor types. An IHC score >40 can distinguish low from high CAIX expression.⁶

DPI-4452

- DPI-4452 is a first-in-class cyclic peptide that binds with high affinity to CAIX
- DPI-4452 can be radiolabeled with gallium-68 ([⁶⁸Ga]Ga-DPI-4452) or lutetium-177 ([¹⁷⁷Lu]Lu-DPI-4452) and may offer an innovative, theranostic approach for identification and treatment of patients with CAIX-expressing tumors (Figure 2)
- Pre-clinical studies have demonstrated that both [⁶⁸Ga]Ga-DPI-4452 and [¹⁷⁷Lu]Lu-DPI-4452 accumulate strongly in ccRCC and CRC xenograft tumors^{2,7}
- It has also been shown that [¹⁷⁷Lu]Lu-DPI-4452 can induce dose-dependent tumor growth inhibition in xenograft mouse models^{2,7}

ELIGIBILITY

KEY INCLUSION CRITERIA

Parts A, B and C

- Aged ≥18 years old
- Provision of written informed consent, dated and signed by the patient prior to any study-specific procedure
- Histologically confirmed, unresectable locally advanced or metastatic ccRCC, PDAC or CRC
- Participants with CRC or PDAC: availability of fresh biopsy or archival biopsy/surgical tumor specimens (preferably, taken after last prior line of therapy)
- Presence of ≥1 non-irradiated tumor lesion detected at conventional imaging (CT/MRI) documented within 4 weeks prior to [⁶⁸Ga]Ga-DPI-4452 administration
- Measurable disease as per RECIST v1.1

KEY EXCLUSION CRITERIA

Parts A, B and C

• Known hypersensitivity to the active substance, to any of the excipients of DPI-4452, or to radiographic contrast agents

KEY OBJECTIVES

monotherapy

Β

PART	OBJECTIVE
	PRIMARY
Α	To evaluate safety and tolerability of a single IV administration of [⁶⁸ Ga]Ga-DPI-4452 for each tumor type
В	To determine the RP2D (MTD or lower dose) of [¹⁷⁷ Lu]Lu-DPI-4452 for each tumor type
•	To evaluate the preliminary antitumor activity of [177Lu]Lu DPI-4452 as

SECONDARY

To assess PK, biodistribution, and dosimetry of [68Ga]Ga DPI 4452 for each tumor type

To establish the optimal imaging procedure (timing) for determining location and burden of positive lesions on [68Ga]Ga-DPI-4452 imaging, by tumor type

Figure 2. Radiolabeled DPI-4452 represents an innovative theranostic approach for CAIX-positive tumors.

STUDY DESIGN

- We present the design of a Phase I/II, interventional, non-randomized, open-label, study of [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 in patients with unresectable, locally advanced or metastatic cancers, namely ccRCC, CRC or PDAC
- This three-part study, initiated in March 2023, is registered as NCT05706129 and has an estimated primary completion date of January 2026
- **Part A** consists of a 1-week evaluation of the safety, tolerability and tracer uptake of a single IV dose of [⁶⁸Ga]Ga-DPI-4452
 - Up to 15 patients with ccRCC, CRC or PDAC will be enrolled
 - Imaging using PET/CT at 4 timepoints on Day 1 will allow evaluation of standard uptake value characteristics and dosimetry in tumor lesions and organs
 - Safety will be evaluated over a 7-day period
- **Part B**, enrolling approximately 42 patients, involves dose-escalation, aiming to estimate the MTD of [¹⁷⁷Lu]Lu-DPI-4452 and determine the RP2D
 - A Bayesian model-based decision procedures using the form of a two-parameters logistic regression modelling the relationship between the dose and the probability of observing a DLT is implemented
 - MTD is defined as the [¹⁷⁷Lu]Lu-DPI-4452 dose that maximizes the posterior probability of DLT rate being in the 20%–35% interval, while controlling the risk of overdose (DLT) at the level of 25%
 - Patients will receive escalating doses of [¹⁷⁷Lu]Lu-DPI-4452 for 28-day cycles, up to 8 cycles
 - DLTs during the first cycle will be considered for dose escalation rules
 - A safety monitoring committee will review data after each cohort
 - Cumulative safety, dosimetry and PK will also be considered for the determination of the RP2D

- Any major surgery within 12 weeks before enrollment
- Lack of resolution of clinically significant toxic effects of prior systemic cancer therapy, surgery, or radiotherapy to Grade ≤1 (except for certain laboratory) parameters, Grade 2 alopecia, and/or stable Grade 2 sensory neuropathy, according to NCI-CTCAE)
- Bladder outflow obstruction or unmanageable urinary incontinence
- Inability to stay in the scanner bed with the arms resting out of the thoracic and abdominal fields for the duration of the scan
- Prior EBRT to >25% of the bone marrow, as judged by the investigator

Part A only

- Administration of a radiopharmaceutical within a period corresponding to 10 half-lives of the radionuclide used prior to injection of [⁶⁸Ga]Ga-DPI-4452
- Previous CAIX-targeting treatment

Parts B and C only

- Administration of a radiopharmaceutical with therapeutic intent within a period of 6 months prior to injection of [⁶⁸Ga]Ga-DPI-4452
- Any previous CAIX-targeting treatment for more than 1 cycle or 1 month
- Receipt of any systemic antineoplastic therapy for the underlying disease and/or other investigational agents within ≤ 5 half-lives or ≤ 4 weeks (whichever is shorter)

To assess concordance between [68Ga]Ga-DPI-4452 PET imaging of tumor lesions versus conventional imaging (CT/MRI) on a per patient basis and by tumor type

Safety and tolerability of [⁶⁸Ga]Ga-DPI-4452 and [¹⁷⁷Lu]Lu-DPI-4452

PK, biodistribution, and dosimetry of [¹⁷⁷Lu]Lu-DPI-4452

Preliminary activity of [¹⁷⁷Lu]Lu-DPI-4452 (PFS rate at 6 months)

PFS of [¹⁷⁷Lu]Lu-DPI-4452 in each tumor type

OS of [¹⁷⁷Lu]Lu-DPI-4452 in each tumor type

DoR of [¹⁷⁷Lu]Lu-DPI-4452 in each tumor type

DCR of [¹⁷⁷Lu]Lu-DPI-4452 in each tumor type

PK, biodistribution, and dosimetry of [¹⁷⁷Lu]Lu-DPI-4452

SUMMARY

- The glycoprotein CAIX is overexpressed in certain tumors and may have multifaceted roles in tumorigenesis, thus is an attractive therapeutic target
- DPI-4452 is a first-in-class, cyclic peptide that binds with high affinity to CAIX, and can be radiolabelled for theranostic use
- Following pre-clinical data demonstrating that [¹⁷⁷Lu]Lu-DPI-4452 can induce dose-dependent tumor growth inhibition, this Phase I/II study will evaluate the theranostic use of [⁶⁸Ga]Ga-DPI-4452 and [¹⁷⁷Lu]Lu-DPI-4452 in patients with ccRCC, CRC or PDAC
- The study is divided into 3 parts which will evaluate the safety and tolerability of imaging with [68Ga]Ga-DPI-4452, determine the RP2D of [177Lu]Lu-DPI-4452 and assess the safety and preliminary efficacy of [¹⁷⁷Lu]Lu-DPI-4452 monotherapy
- As of April 2023, the study is recruiting patients at 2 centres in Australia

ABBREVIATIONS

- The dose escalation will initially be conducted in the group of ccRCC patients; dose escalation in the CRC and PDAC groups will start after the RP2D is established for ccRCC
- **Part C** consists of a three single arms that will assess the preliminary anti-tumor efficacy of [¹⁷⁷Lu]Lu-DPI-4452 at the RP2D in ccRCC, CRC and PDAC
 - The primary endpoint is ORR, defined as the percentage of patients who achieve a partial response or complete response as measured by RECIST v1.1
 - Enrolling ~30 patients per tumor type, and assuming an ORR response of 10% with SOC, Part C will have ~90% power to detect an improvement of 30%

Pastorekova & Gillies. Cancer Metastasis Rev. 2019;38:65–77. 2. Wiedemann N, et al. J Nucl Med. 2022;63(Suppl 2):4048. Stillebroer AB, et al. *Eur Urol*. 2010;58:75–83. van Kuijk SJA, et al. Front Oncol. 2016;6:69. 5. Pastorekova S, et al. Gastroenterology. 1997;112:398-408. 6. Ilie M, et al, Br J Cancer. 2010;102:1627–1635 7. Attinger A, et al. Eur J Nucl Med Mol Imaging. 2022;49(Suppl 1):S1–S751. CAIX, carbonic anhydrase; ccRCC, clear cell renal cell cancer; CRC, colorectal cancer; CT, computed tomography; DCR, disease control rate; DLT, dose-limiting toxicity; DoR, duration of response; EBRT, external beam radiation therapy; IHC, immunohistochemistry; IV, intravenous; MRI, magnetic resonance imaging; MTD, maximum tolerated dose; NCI-CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; ORR, overall response rate; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; PET, positron emission tomography; PFS, progression-free survival; PK, pharmacokinetics; RECIST, Response Evaluation Criteria In Solid Tumors; RP2D, recommended Phase 2 dose; SAE, serious adverse event; SOC, standard of care; TEAE, treatment-emergent adverse event.

ACKNOWLEDGEMENTS

This study is funded by Debiopharm International SA. Editorial assistance was provided by Dr Georgia Greaves at Cancer Communications & Consultancy Ltd, funded by Debiopharm International SA,

feldmand@mskcc.org olena.vlasyuk@debiopharm.com