FIRST-IN-HUMAN SAFETY, IMAGING AND DOSIMETRY OF [⁶⁸GA]GA-DPI-4452, A NOVEL CA IX-TARGETING PEPTIDE, IN PATIENTS WITH CLEAR CELL RENAL CELL CARCINOMA **ABSTRACT #373**

Michael S. Hofman,¹ Ben Tran,¹ Darren R. Feldman, ² Anna Pokorska-Bocci,³ Solen Pichereau,³ Jonathan Wessen,³ Mohammad B. Haskali,¹ Richard Sparks,⁴ Olena Vlasyuk,³ Ivana Galetic³ ¹Peter MacCallum Cancer Center, 305 Grattan Street. Melbourne, Victoria 3000, Australia; ²Department of Medicine, Weill Cornell Medical College, New York, NY, USA; ³Debiopharm International SA, Lausanne, Switzerland; ⁴CDE Dosimetry Services, Inc., Knoxville, TN USA (Services, Inc., Knoxville, TN USA) (Service

BACKGROUND

Carbonic anhydrase IX (CA IX) and cancer

- In tumors, hypoxic conditions or mutation of the Von Hippel-Lindau tumor suppressor gene can induce expression of the cell surface glycoprotein, CA IX¹
- CA IX expression has been linked to tumorigenesis from early carcinogenesis through to metastasis¹
- Various tumors, including clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC) and pancrea ductal adenocarcinoma (PDAC), have been shown to express high CA IX levels; this expression is linke aggressive tumor behavior, treatment resistance and poor outcomes^{2–4}
- The high expression of CA IX in hypoxic tumors and limited expression in healthy tissues⁵ make CA IX attractive diagnostic and therapeutic target

RESULTS

Patient demographics and [⁶⁸Ga]Ga-DPI-4452 administration

• Three patients with metastatic ccRCC, all male, were enrolled in the Part A imaging cohort of the study

Patient	Age	Sex	Cancer type	ECOG score	Prior systemic anti-cancer therapy lines
1	54	Male	Metastatic ccRCC	1	2
2	51	Male	Metastatic ccRCC	0	2
3	48	Male	Metastatic ccRCC	0	2

*All patients received/were on 2nd-line treatment at study entry; 2nd-line therapy was stopped for 10 days in two patients during the study.

[⁶⁸Ga]Ga-DPI-4452 uptake

• The optimal tumor visualization timepoint, based on central reader visual assessment of image quality, visualization of all lesions, and heterogeneity in tumor uptake, was established as 1 hour post-administration of [⁶⁸Ga]Ga-DPI-4452

Patient 3 Patient 1 Patient 2

Figure 1. Whole-body maximum intensity projections 1-hour post-[68Ga]Ga-DPI-4452 administration.

ABBREVIATIONS

CAIX, carbonic anhydrase IX; ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; ECOG, Eastern Cooperative Oncology Group; CT, computed tomography; PDAC, pancreatic ductal adenocarcinoma; PET, positron emission tomography; SD, standard deviation; SUV_{max}, maximum standardized uptake value; TEAE, treatment-emergent adverse event.

STUDY DESIGN AND METHODS

	DPI-4452	•
the	 DPI-4452 is a first-in-class, DOTA cage-containing, cyclic peptide with high-affinity binding to CA IX 	•
atic ed to	 Radiolabeling DPI-4452 with gallium-68 ([⁶⁸Ga]Ga-DPI-4452) or lutetium-177 ([¹⁷⁷Lu]Lu-DPI-4452) is an innovative, theranostic approach for identifying and treating patients with CA IX- expressing tumors 	•
an	 Radiolabeled DPI-4452 may confer better characteristics for both imaging and therapy compared with existing antibody approaches 	

- imaging, plus urine and blood sampling

Part A	Evaluate th
primary	of a singl
objective	[⁶⁸ G
	-

[⁶⁸Ga]Ga-DPI-4452 uptake

s. n*

- At 1-hour post-[68Ga]Ga-DPI-4452 administration, the maximum tumor standardized uptake value (SUV_{max}) across 36 lesions ranged from 6.8 to 211.6, with a mean of 64.7 (SD, 54.8)
- Use of [68Ga]Ga-DPI-4452 enabled identification of 17 lesions (in the lymph nodes, lung, pancreas, parotid gland and other sites) that were not detectable with prior conventional imaging approaches (CT)

	Patient 1	Patient 2	Patient 3	
esions detected by CT and PET	5	6	8	
Discordant lesions (not detected by PET)	1	0	0	
Lesions found by PET only	0	8	9	
Lesion SUV _{max} range	9–109	7–106	9–212	

Figure 2. Representative images of a patient with ccRCC 1-hour post-administration of [68Ga]Ga-DPI-4452.

Safety

Two grade 1 TEAEs were reported in two patients (increased blood creatine phosphokinase and headache); neither were causally related to [68Ga]Ga-DPI-4452 administration

REFERENCES

- 1. Pastorekova & Gillies. Cancer Metastasis Rev. 2019;38:65–77. 4. van Kuijk SJA, et al. Front Oncol. 2016;6:69. 2. Wiedemann N, et al. *J Nucl Med.* 2022;63(Suppl 2):4048. 3. Stillebroer AB, et al. *Eur Urol*. 2010;58:75–83.
 - 5. Pastorekova S, et al. *Gastroenterology*. 1997;112:398–408.
 - 6. Ilie M, et al, Br J Cancer. 2010;102:1627–1635

NCT05706129 is a first-in-human, Phase 1/2, interventional, non-randomized, open-label, study of [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 in patients with unresectable metastatic ccRCC, CRC or PDAC

Here we report findings from the completed Phase 1, Part A, ccRCC imaging cohort, which consisted of a 1-week evaluation of the safety, tolerability and tracer uptake of a single intravenous (IV) dose of [⁶⁸Ga]Ga-DPI-4452

Standard uptake value characteristics and dosimetry in tumors and organs were evaluated via serial positron-emission tomography (PET)/computed tomography (CT)

Safety, assessed by incidence of treatment-emergent adverse events (TEAEs), was evaluated over a 7-day period post-injection

ne safety and tolerability gle IV administration of Ga]Ga-DPI-4452

Assess pharmacokinetics, biodistribution, and dosimetry of [68Ga]Ga-DPI-4452

Establish optimal procedures for determining location and burden of lesions on [68Ga]Ga-DPI-4452 imaging

Pharmacokinetics and dosimetry

- Over 80% of total administered radioactivity cleared from the bloodstream within 1 hour
- Between early and late time intervals, the average percentage injected dose in urine declined from 13.3 (SD, 4.5) to 6.1 (SD, 3.6)

Figure 4. Dosimetry estimates of [68Ga]Ga-DPI-4452 in 24 evaluated organs. Error bars represent SD.

CONCLUSIONS

- DPI-4452 radiolabeled with gallium-68 provides exceptional tumor images in patients with ccRCC without clinically significant toxicities
- Very high SUV values and tumor-to-background ratios with [68Ga]Ga-DPI-4452 suggest potential for use in both diagnostics and patient selection for therapy
- Imaging with [68Ga]Ga-DPI-4452 offers tumor visualization within minutes; this is considerably faster than current approaches using girentuximab (a zirconium-89-labeled anti-CAIX antibody) which allows tumor visualization around 3–7 days post-administration
- These first-in-human findings with radiolabeled DPI-4452 are encouraging for the subsequent evaluation of treatment with [¹⁷⁷Lu]Lu-DPI-4452

ACKNOWLEDGEMENTS

This study is funded by Debiopharm International SA. The authors would like to thank the patients and their families/carers for participating in this study, and acknowledge their Peter Mac co-investigators Brittany Emmerson, A/Prof Grace Kong and Dr Sidney Levy, as well as the nuclear medicine, medical oncology and clinical trials teams. Editorial assistance was provided by Dr Georgia Greaves at Cancer Communications & Consultancy Ltd, funded by Debiopharm International SA.

igs tes mus roid ivary gla
--

STUDY CONTACT

michael.hofman@petermac.org olena.vlasyuk@debiopharm.com