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SUMMARY

Debio 0123 is an investigational, orally available, highly selective, and brain-penetrant adenosine triphosphate
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CONCLUSIONS

This study demonstrates the potential of LMMs as
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in both patient-derived organoid and in vivo xenograft models. This biology-driven, machine learning-based

classifier outperformed the baseline model, underscoring its potential for clinical application?. Building on that

foundation, we now present a second-generation, clinically relevant, biology-informed machine learning predictor

of response to Debio 0123 and carboplatin (CB) combination therapy. Developed using the Genialis ResponderID™

and Supermodel platforms, this model was built upon clinical data from patients enrolled in the Debio 0123-101

tissue samples collected from patients with advanced
cancer using either fresh or archival material. Library
preparation was conducted using the Roche KAPARNA
HyperPrep Kit. Sequencing was performed on the lllu-

The prior strategy always predicts the majority class
and assigns class probabilities according to the empir-
ical class distribution in the training data. The random
strategy predicts the treatment benefit of a randomly

Legend: AUROC (area under the receiver operating characteristic), AUPRC (area under the precision

TPR (true positive rate), TNR (true negative rate), and BA (balanced accuracy).

-recall curve), ACC (accuracy), PPV (positive predictive value), NPV (negative predictive value),

performance framework for biomarker-driven

precision oncology. It achieved strong predictive
performance in nested cross-validation (AUROC
0.95, accuracy 0.80, F1-score 0.77, log loss 0.34),
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