

AML POSES A CRITICAL CLINICAL CHALLENGE

A growing global burden

Acute myeloid leukemia (AML) is the most common acute leukemia in adults, accounting for **~23.1% of all leukemia cases worldwide** (2017) ^[1]

It is highly aggressive with poor survival outcomes:

- ▶ 5-year relative survival: **32.9%** ^[2]
- ▶ With current SOC, this falls to **<10-15%** in older patients (≥ 60 years) ^[3]
- ▶ Once patients relapse, median overall survival drops **<6 months** ^[4]

The global burden has escalated over recent decades, with morbidity and mortality continuing to rise ^[5]:

In the US alone, projections for 2025 estimate **~22,010 new diagnoses** and **~11,090 deaths** ^[6]

Median age of diagnosis:
68 years in US ^[7]

Incidence higher **in men** ^[5]

Most common potential risk factors related to AML:
smoking, previous chemo- or radiotherapies, history of blood disorders, genetic disorders ^[5]

These poor outcomes are driven by limited treatment options and the underlying complexity of AML biology.

COMPLEXITY OF THE DISEASE

Similarity between AML blasts and normal hematopoietic cells ^[10]

Genetic and molecular heterogeneity ^[10]

Clonal evolution and therapy resistance ^[11]

Bone marrow niche protects leukemic cells ^[12]


What exactly is AML?

AML is ^[8,9]

- ▶ A blood and bone marrow cancer that predominantly impacts older adults
- ▶ A heterogeneous and malignant clonal disorder of the bone marrow/hematopoietic system
- ▶ Driven by chromosomal rearrangements and gene mutations in hematopoietic stem and progenitor cells
- ▶ Characterized by an accumulation of undifferentiated myeloid blasts
- ▶ Associated with impaired production of normal blood cells

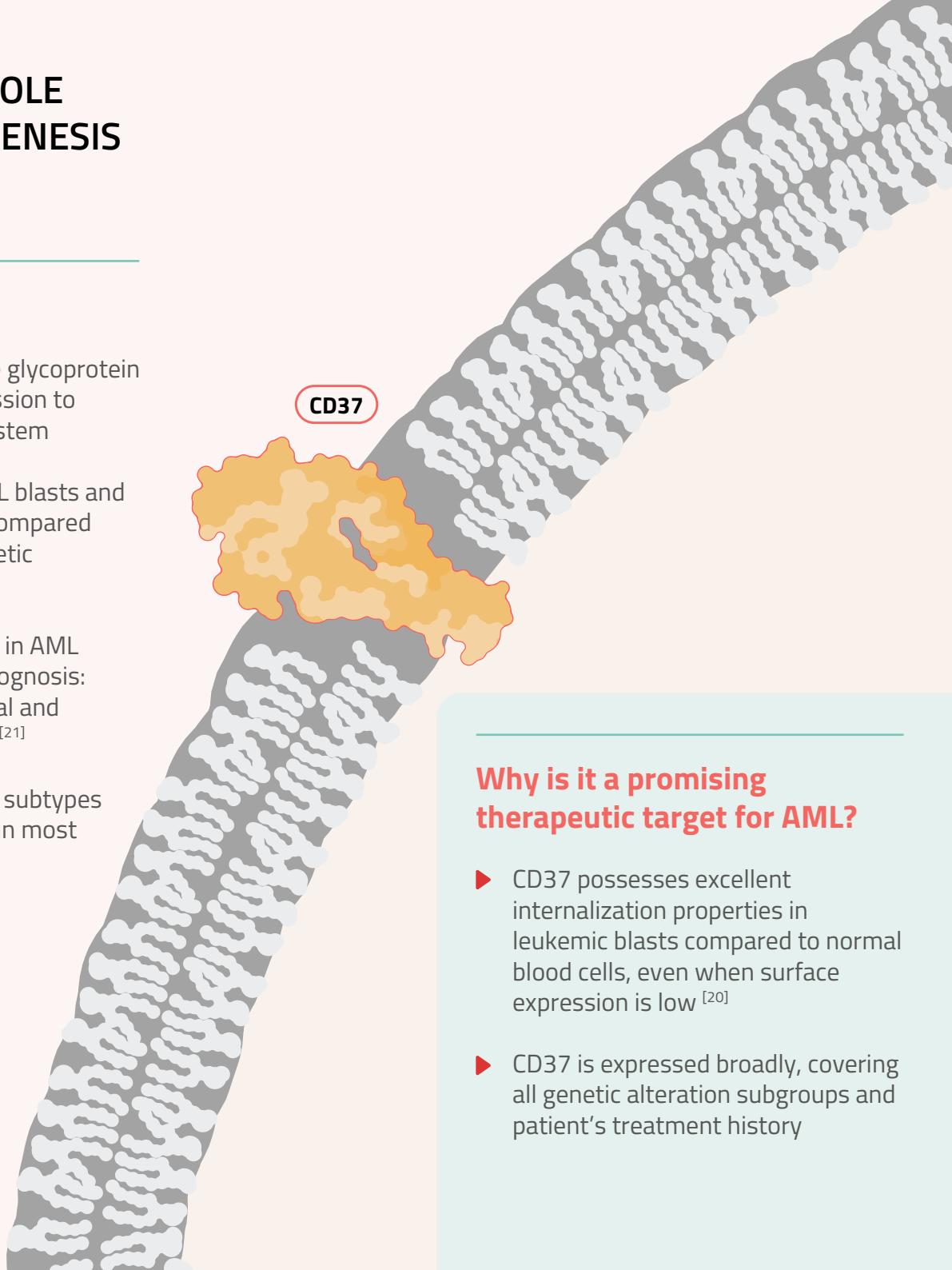
THE CURRENT TREATMENT LANDSCAPE

Types of treatment available

Where current therapies fall short

Survival is poorest in **older** (<15% 5-year survival in patients ≥ 60 years) ^[3] **and R/R AML patients** (OS <6 months) ^[4]

Yet treatment choices remain limited


~30–35% relapse rates in younger patients with favorable risk factors, but **~80%** in older patients with adverse risk factors ^[16]

More than **50%** of patients with AML are ineligible for intensive chemotherapy regimens ^[17]

CD37 PLAYS A ROLE IN AML PATHOGENESIS

CD37 expression

- ▶ CD37 is a cell-surface glycoprotein with restricted expression to the hematopoietic system
- ▶ Overexpressed in AML blasts and leukemic stem cells compared to normal hematopoietic stem cells ^[18–20]
- ▶ Prognostic biomarker in AML related to the poor prognosis: shorter overall survival and disease-free survival ^[21]
- ▶ Expressed in multiple subtypes of AML ^[18–20] – found in most primary AML blasts

Why is it a promising therapeutic target for AML?

- ▶ CD37 possesses excellent internalization properties in leukemic blasts compared to normal blood cells, even when surface expression is low ^[20]
- ▶ CD37 is expressed broadly, covering all genetic alteration subgroups and patient's treatment history

REFERENCES

1. Dong Y, Shi O, Zeng Q, Lu X, Wang W, Li Y, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. *Exp Hematol Oncol.* 2020 Jun 19;9:14.
2. SEER [Internet]. [cited 2025 Sep 2]. Acute Myeloid Leukemia - Cancer Stat Facts. Available from: <https://seer.cancer.gov/statfacts/html/amyl.html>
3. Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. *Blood Cancer J.* 2021 Feb 22;11(2):41.
4. van der Maas NG, Breems D, Klerk CPW, Pabst T, Gradowska P, Thomas A, et al. A revised prognostic model for patients with acute myeloid leukemia and first relapse. *Blood Adv.* 2025 Jul 28;9(15):3853–64.
5. Zhou Y, Huang G, Cai X, Liu Y, Qian B, Li D. Global, regional, and national burden of acute myeloid leukemia, 1990–2021: a systematic analysis for the global burden of disease study 2021. *Biomarker Research.* 2024 Sep 11;12(1):101.
6. Key Statistics for Acute Myeloid Leukemia (AML) | American Cancer Society [Internet]. [cited 2025 Sep 2]. Available from: <https://www.cancer.org/cancer/types/acute-myeloid-leukemia/about/key-statistics.html>
7. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. *Blood Reviews.* 2019 Jul 1;36:70–87.
8. Rubnitz JE, Gibson B, Smith FO. Acute Myeloid Leukemia. *Hematology/Oncology Clinics of North America.* 2010 Feb 1;24(1):35–63.
9. Jäger P, Geyh S, Twarock S, Cadeddu RP, Rabes P, Koch A, et al. Acute myeloid leukemia-induced functional inhibition of healthy CD34+ hematopoietic stem and progenitor cells. *Stem Cells.* 2021 Sep 1;39(9):1270–84.
10. The Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. *N Engl J Med.* 2013 May 30;368(22):2059–74.
11. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. *Nature.* 2012 Jan;481(7382):506–10.
12. Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. *Front Cell Dev Biol.* 2021 Nov 19;9:764698.
13. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. *New England Journal of Medicine.* 2020 Aug 12;383(7):617–29.
14. Liu H. Emerging agents and regimens for AML. *J Hematol Oncol.* 2021 Mar 23;14:49.
15. Loke J, Buka R, Craddock C. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia: Who, When, and How? *Front Immunol.* 2021 May 3;12:659595.
16. de Lima M, Roboz GJ, Platzbecker U, Craddock C, Ossenkoppele G. AML and the art of remission maintenance. *Blood Reviews.* 2021 Sep 1;49:100829.
17. Griffiths EA, Carraway HE, Chandhok NS, Prebet T. Advances in non-intensive chemotherapy treatment options for adults diagnosed with acute myeloid leukemia. *Leukemia Research.* 2020 Apr 1;91:106339.
18. Pereira DS, Guevara CI, Jin L, Mbong N, Verlinsky A, Hsu SJ, et al. AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML. *Mol Cancer Ther.* 2015 Jul;14(7):1650–60.
19. Caulier B, Joaquina S, Gelebart P, Dowling TH, Kaveh F, Thomas M, et al. CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia. *Cell Rep Med.* 2024 May 15;5(6):101572.
20. Jeremy E, Artiga E, Elgamal S, Cheney C, Eicher D, Zalponik K, et al. CD37 in acute myeloid leukemia: a novel surface target for drug delivery. *Blood Adv.* 2024 Oct 18;9(1):1–14.
21. Stathis A, Flinn IW, Madan S, Maddocks K, Freedman A, Weitman S, et al. Safety, tolerability, and preliminary activity of IMGN529, a CD37-targeted antibody-drug conjugate, in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: a dose-escalation, phase I study. *Invest New Drugs.* 2018 Oct;36(5):869–76.